Aller à : contenu haut bas recherche
 
 
EN     FR
Vous êtes ici:   UNIL > HEC Inst. > HEC App. > RECHERCHE
 
 

Chengxiu Ling

Contact

Scientific Collaborator
Department of Actuarial Science


Publications

18 last publications ordered by: publication type  -  year

: Peer Reviewed

Articles

Liu Chuandi , Ling Chengxiu (in press). location-invariant non-positive moment-type estimator. Communications in Statistics–Theory and .


Debicki K., Hashorva E., Ji L. ; Ling C. (2017). Comparison Inequalities for Order Statistics of Gaussian Arrays. Latin American Journal of Probability and Mathematical Statistics, 14, 93-116. Peer Reviewed


Albin P., Hashorva E., Ji L. ; Ling C. (2016). Extremes and limit theorems for difference of chi-type processes. ESAIM: Probability and Statistics, 20, 349-366. Peer Reviewed


Hashorva E. , Ling C. (2016). Maxima of skew elliptical triangular arrays. Communications in Statistics - Theory and Methods, 45, 3692-3705. Peer Reviewed


Ling C. , Peng Z. (2016). Tail asymptotics of generalized deflated risks with insurance applications. Insurance: Mathematics and Economics, 71, 220-231. Peer Reviewed


Ling Chengxiu , Tan Zhongquan (2016). On maxima of chi-processes over threshold dependent grids. Statistics, 50, 579-595. Peer Reviewed


Ling C. , Peng Z. (2016). Extremes of order statistics of self-similar processes. SCIENTIA SINICA Mathematica, 8, 1139-1148. Peer Reviewed


C. Ling , Z. Peng (2015). Tail dependence for two skew slash distributions. Statistics and Its Interfaces, 8, 63-69.


Dȩbicki K., Hashorva E., Ji L. ; Ling C. (2015). Extremes of order statistics of stationary processes. TEST, 24, 229-248. Peer Reviewed


Hashorva E., Ling C. ; Peng Z. (2014). Tail asymptotic expansions for L-statistics. Science China Mathematics, 57, 1993-2012. Peer Reviewed


Hashorva E., Ling C. ; Peng Z. (2014). Modeling of censored bivariate extremal events. Journal of the Korean Statistical Society, 43, 323-338. Peer Reviewed


Hashorva E., Ling C. ; Peng Z. (2014). Second-order tail asymptotics of deflated risks. Insurance: Mathematics and Economics, 56, 88-101. Peer Reviewed


Ling Chengxiu, Peng Zuoxiang ; Nadarajah Saralees (2012). Location invariant Weiss-Hill estimator. Extremes, 15, 197-230. Peer Reviewed


Ling C, Peng Z ; Nadarajah S (2008). A location invariant moment-type estimator. I. Theor. Probability and Math. Statist., 23~31. Peer Reviewed


Ling C., Peng Z. ; Nadarajah S. (2008). A location invariant moment-type estimator II. Theory of Probability and Mathematical Statistics, 177-189. Peer Reviewed


Zou J , Ling C (2006). Asymptotically Unbiased Moment Estimators. J. Southwest University, China, 19-23.


Ling C , Peng Z (2005). The Sufficient and Necessary Conditions for the Tail-equivalent Distributions in the Same Attraction Domain. J. Southwest University, China, 18-22.


Thesis

Ling C., Hashorva E. (Dir.) (2014). Extremal properties of certain risk models. Université de Lausanne, Faculté des hautes études commerciales.



 
 
Search


Internef - CH-1015 Lausanne - Suisse  -   Tél. +41 21 692 33 00  -   Fax +41 21 692 33 05
Swiss University