Aller à : contenu haut bas recherche
 
 
EN     FR
Vous êtes ici:   UNIL > HEC Inst. > HEC App. > SYLLABUS
 
 

Time Series

  • Enseignant(s): E.Hashorva
  • Titre en français: Séries temporelles
  • Cours donné en: anglais
  • Crédits ECTS: 3 crédits
  • Horaire: Semestre de printemps 2017-2018, 2.0h. de cours (moyenne hebdomadaire)
  •  séances
  • site web du cours site web du cours
  • Formation concernée: Maîtrise universitaire ès Sciences en sciences actuarielles

 

Objectifs

Important examples of time series include monthly number of claims filed from an insurance portfolio, cash-flow data over time, monthly climate data (temperature, snowfall, rainfall), the number of sun spots observed over time, etc. Insurance and finance applications aim at explaining the observed time series in order to understand the underlying phenomenon and eventually build models for future predictions. Typically, time series data contain information on trends, business cycle, sesonality and are subject to residual errors.

This course shall discuss both probabilistic and statistical aspects of stationary and non-stationary times series including the multivarite setup and extreme-value models. R will be the main platform for the illustration of various concepts and the statistical analysis of real/simulated time series data.

Contenus

  • Introduction to time series data
  • ARMA Models: Basics
  • Probabilistic Background
  • ARMA Models: Revisited
  • Financial Time Series
  • Estimation & Prediction
  • Non-stationary & Multivariate Time Series

The course will be accompanied by exercises and diverse R programming tasks.

Références


Brockwell, P.J., Davis, R.A. (2002) Introduction to time series and forecasting. Second Edition, Springer
Ruppert, D., Matteson, D.S. (2015) Statistics and data analysis for financial engineering, with R examples. Second Edition, Springer
Shumway, R.H., Stoffer, D.S. (2011) Time series analysis and its applications, with R examples. Third Edition, Springer
Embrechts, P., Klüpelberg, C., and Mikosch, T. (1997) Modeling extremal events for finance and insurance. Springer

Pré-requis

Basics in probability

Evaluation

1ère tentative

Examen:
Ecrit 2h00 heures
Documentation:
Non autorisée
Calculatrice:
Non autorisée
Evaluation:

final grade = grade final exam

Rattrapage

Examen:
Ecrit 2h00 heures
Documentation:
Non autorisée
Calculatrice:
Non autorisée
Evaluation:

final grade = grade final exam



[» page précédente]           [» liste des cours]
 
Recherche


Internef - CH-1015 Lausanne - Suisse  -   Tél. +41 21 692 33 00  -   Fax +41 21 692 33 05
Swiss University