Aller à : contenu haut bas recherche
 
 
EN     FR
Vous êtes ici:   UNIL > HEC Inst. > HEC App. > SYLLABUS
 
 

Programming Tools in Data Science

  • Enseignant(s):   S.Orso  
  • Titre en français: Outils de programmation en Data Science
  • Cours donné en: anglais
  • Crédits ECTS: 6 crédits
  • Horaire: Semestre d'automne 2019-2020, 4.0h. de cours (moyenne hebdomadaire)
  •  séances
  • site web du cours site web du cours
  • Formations concernées:
    Maîtrise universitaire ès Sciences en management, Orientation stratégie, organisation et leadership

    Maîtrise universitaire ès Sciences en management, Orientation business analytics

    Maîtrise universitaire ès Sciences en management, Orientation comportement, économie et évolution

    Maîtrise universitaire ès Sciences en management, Orientation marketing

 

Objectifs

The objective of this course is to provide an introduction to programming using the R language. It will also provide students with notions of data management, manipulation and analysis as well as of reproducible research, result-sharing and version control (using GitHub). At the end of the class, students should be able to construct their own R package, make it available on GitHub, document it using literate programming and render it visible by making a website.

Contenus

This class is intended to introduce to the students a wide range of programming tools using the R language. Tentative list of topics that will be discussed in this class are listed below:

  • Reproducible research: knitr and rmarkdown
  • Version control: GitHub
  • Introduction to programming: Data structures, logical operators, control structures and functions
  • Visualizations: Exploratory data analysis with Base R and ggplot2
  • R packages: Construction of R-packages using devtools, roxygen2 and pkgdown
  • Communication: webiste creation via blogdown, Web application via shiny
  • Webscrapping: Automatic extraction of data from websites using SelectorGadget, rvest and quantmod
  • High performance computing: R and C++ integration via Rcpp, parallel computing.

No IT background is assumed from the students but a strong will to learn useful and practical programming skills.

Références

This class is based on the textbook: “An Introduction to Statistical Programming Methods with R” , which is available here: http://r.smac-group.com.

The following texts will be heavily referenced:

Check the website of the course for more references.

Pré-requis

This course is complementary to the Data Science in Business Analytics class, taught in Spring 2019. Although not mandatory, we recommend the students to follow the Data Science in Business Analytics class prior to ours as it will facilitate they learning curve and diminish the importance of the workload that this class represents.

Evaluation

1ère tentative

Examen:
Sans examen (cf. modalités)  
Evaluation:

The learning outcomes are continuously assessed during the semester with the homeworks (group), the project (group) and the participation (individual) (check this link for more details).

Rattrapage

Examen:
Sans examen (cf. modalités)  
Evaluation:

A second opportunity to pass the homeworks and/or the project is proposed to the failing students/groups.



[» page précédente]           [» liste des cours]
 
Recherche


Internef - CH-1015 Lausanne - Suisse  -   Tél. +41 21 692 33 00  -   Fax +41 21 692 33 05
Swiss University